Asynchronous Linear Solvers

Teodor Nikolov

Prof. Andreas Frommer, Prof. Dirk Pleiter
Linear systems

Fluid dynamics
Lattice QCD
Quantum Mechanics
Heat transfer
Electromagnetic potential
Structural Analysis

Finite Elements
Finite Differences

Ax = b

Solution!
(Magic (usually 42))
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 642069.

Solvers

Variants
- Block (multiple RHS)
- Communication avoiding
 Asynchronous

Solvers
- Additive Schwarz
- Multigrid
 (block-)Jacobi
- Gauss-Seidel
- SOR
- CG
- GMRES
- Bi-CGSTAB

Kernels
- NORM: \(y = \alpha x + \beta y \)
- DOT: \((x, y) \)
- AXPY: \(\|x\| \)
- SPMV: \(Ax \)
- TSPMV: \(A^T x \)

The holy grail
- Numerical stability
- High convergence rate
- Generality
- Scalability
- Resilience
- Low memory consumption

Ax = b

[Variants...] [Preconditioner] Accelerator Solution!
(usually 42)
Asynchronator

MPI
CUDA
C++11/14
Git
GitLab
Doxygen
CMake
GTest

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 642069